skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gillen, Edward"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The Eos cloud, recently discovered in the far ultraviolet via H$$_2$$ fluorescence, is one of the nearest known dark molecular clouds to the Sun, with a distance spanning from $${\sim} 94\rm{\!-\!}136$$ pc. However, with a mass ($${\sim} 5.5\times 10^3$$ M$$_\odot$$) just under $$40\,$$ per cent that of star forming clouds like Taurus and evidence for net molecular dissociation, its evolutionary and star forming status is uncertain. We use Gaia data to investigate whether there is evidence for a young stellar population that may have formed from the Eos cloud. Comparing isochrones and pre-main sequence evolutionary models there is no clear young stellar population in the region. While there are a small number of $${<} 10$$ Myr stars, that population is statistically indistinguishable from those in similar search volumes at other Galactic latitudes. We also find no unusual spatial or kinematic clustering toward the Eos cloud over distances $$70\!-\!150$$ pc. Overall, we conclude that the Eos cloud has most likely not undergone any recent substantial star formation and further study of the dynamics of the cloud is required to determine whether it will do so in the future. 
    more » « less
    Free, publicly-accessible full text available March 26, 2026